58 research outputs found

    Non-Degenerate Squarks from Flavored Gauge Mediation

    Full text link
    We study the squark spectra of Flavored Gauge Mediation Models, in which messenger-matter superpotential couplings generate new, generation-dependent contributions to the squark masses. The new couplings are controlled by the same flavor symmetry that explains the fermion masses, leading to excellent alignment of the quark and squark mass matrices. This allows for large squark mass splittings consistent with all flavor bounds. In particular, second-generation squarks are often significantly lighter than the first-generation squarks. As squark production at the LHC is dominated by the up- and down-squarks and the efficiencies for squark searches increase with their masses, the charm and/or strange squark masses can be well below the current LHC bounds. At the same time, even with a single set of messengers, the models can generate large stop mixings which result in large loop contributions to the Higgs mass.Comment: 16 pages, 2 figures. v2: Typo corrected, references adde

    Gluino Meets Flavored Naturalness

    Full text link
    We study constraints from LHC run I on squark and gluino masses in the presence of squark flavor violation. Inspired by the concept of `flavored naturalness', we focus on the impact of a non-zero stop-scharm mixing and mass splitting in the right-handed sector. To this end, we recast four searches of the ATLAS and CMS collaborations, dedicated either to third generation squarks, to gluino and squarks of the first two generations, or to charm-squarks. In the absence of extra structure, the mass of the gluino provides an additional source of fine tuning and is therefore important to consider within models of flavored naturalness that allow for relatively light squark states. When combining the searches, the resulting constraints in the plane of the lightest squark and gluino masses are rather stable with respect to the presence of flavor-violation, and do not allow for gluino masses of less than 1.2 TeV and squarks lighter than about 550 GeV. While these constraints are stringent, interesting models with sizable stop-scharm mixing and a relatively light squark state are still viable and could be observed in the near future.Comment: 34 pages. v2: clarifying comments and few references added, typos fixed, matches published versio

    FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    New physics has traditionally been expected in the high-pTp_T region at high-energy collider experiments. If new particles are light and weakly-coupled, however, this focus may be completely misguided: light particles are typically highly concentrated within a few mrad of the beam line, allowing sensitive searches with small detectors, and even extremely weakly-coupled particles may be produced in large numbers there. We propose a new experiment, ForwArd Search ExpeRiment, or FASER, which would be placed downstream of the ATLAS or CMS interaction point (IP) in the very forward region and operated concurrently there. Two representative on-axis locations are studied: a far location, 400 m400~\text{m} from the IP and just off the beam tunnel, and a near location, just 150 m150~\text{m} from the IP and right behind the TAN neutral particle absorber. For each location, we examine leading neutrino- and beam-induced backgrounds. As a concrete example of light, weakly-coupled particles, we consider dark photons produced through light meson decay and proton bremsstrahlung. We find that even a relatively small and inexpensive cylindrical detector, with a radius of ∼10 cm\sim 10~\text{cm} and length of 5−10 m5-10~\text{m}, depending on the location, can discover dark photons in a large and unprobed region of parameter space with dark photon mass mA′∼10 MeV−1 GeVm_{A'} \sim 10~\text{MeV} - 1~\text{GeV} and kinetic mixing parameter ϵ∼10−7−10−3\epsilon \sim 10^{-7} - 10^{-3}. FASER will clearly also be sensitive to many other forms of new physics. We conclude with a discussion of topics for further study that will be essential for understanding FASER's feasibility, optimizing its design, and realizing its discovery potential.Comment: 35 Pages, 12 figures. Version 2, references added, minor change

    Three-Body Decays of Sleptons with General Flavor Violation and Left-Right Mixing

    Full text link
    We determine the widths of three-body decays of sleptons, l~−→l~±l−l∓,l~−ννˉ,l~−qqˉ\tilde{l}^- \to \tilde{l}^{\pm} l^- l^{\mp}, \tilde{l}^- \nu \bar{\nu}, \tilde{l}^- q \bar{q}, in the presence of arbitrary slepton flavor violation and left-right mixing. These decays are important in scenarios in which the lightest supersymmetric particle is the gravitino, a generic possibility in models with gauge- and gravity-mediated supersymmetry breaking. Three-body decays have been discussed previously assuming flavor conservation and left-right mixing in only the stau sector. Flavor violation and general left-right mixing open up many new decay channels, which provide new avenues for precision mass measurements and may play an essential role in solving the standard model flavor problem. We present results for toy models with two-generation mixing, and discuss the implementation of these results in SPICE, a program that simplifies collider event simulations of flavor-violating supersymmetric models.Comment: 25 pages, 5 figures; v2: published versio

    Protophobic Fifth-Force Interpretation of the Observed Anomaly in \u3csup\u3e8\u3c/sup\u3eBe Nuclear Transitions

    Get PDF
    Recently a 6.8σ anomaly has been reported in the opening angle and invariant mass distributions of e+e− pairs produced in 8Be nuclear transitions. The data are explained by a 17 MeV vector gauge boson X that is produced in the decay of an excited state to the ground state, 8Be∗ → 8Be X, and then decays through X → e+e−. The X boson mediates a fifth force with a characteristic range of 12 fm and has millicharged couplings to up and down quarks and electrons, and a proton coupling that is suppressed relative to neutrons. The protophobic X boson may also alleviate the current 3.6σ discrepancy between the predicted and measured values of the muon’s anomalous magnetic moment

    Protophobic Fifth-Force Interpretation of the Observed Anomaly in \u3csup\u3e8\u3c/sup\u3eBe Nuclear Transitions

    Get PDF
    Recently a 6.8σ anomaly has been reported in the opening angle and invariant mass distributions of e+e− pairs produced in 8Be nuclear transitions. The data are explained by a 17 MeV vector gauge boson X that is produced in the decay of an excited state to the ground state, 8Be∗ → 8Be X, and then decays through X → e+e−. The X boson mediates a fifth force with a characteristic range of 12 fm and has millicharged couplings to up and down quarks and electrons, and a proton coupling that is suppressed relative to neutrons. The protophobic X boson may also alleviate the current 3.6σ discrepancy between the predicted and measured values of the muon’s anomalous magnetic moment
    • …
    corecore